A new wearable technology — for plants

Journal Reference:

  1. Júlia A. Barbosa, Vitoria M. S. Freitas, Lourenço H. B. Vidotto, Gabriel R. Schleder, Ricardo A. G. de Oliveira, Jaqueline F. da Rocha, Lauro T. Kubota, Luis C. S. Vieira, Hélio C. N. Tolentino, Itamar T. Neckel, Angelo L. Gobbi, Murilo Santhiago, Renato S. Lima. Biocompatible Wearable Electrodes on Leaves toward the On-Site Monitoring of Water Loss from Plants. ACS Applied Materials & Interfaces, 2022; DOI: 10.1021/acsami.2c02943

Newer wearable devices are more than simple step-counters. Some smart watches now monitor the electrical activity of the wearer’s heart with electrodes that sit against the skin. And because many devices can wirelessly share the data that are collected, physicians can monitor and assess their patients’ health from a distance. Similarly, plant-wearable devices could help farmers and gardeners remotely monitor their plants’ health, including leaf water content — the key marker of metabolism and drought stress. Previously, researchers had developed metal electrodes for this purpose, but the electrodes had problems staying attached, which reduced the accuracy of the data. So, Renato Lima and colleagues wanted to identify an electrode design that was reliable for long-term monitoring of plants’ water stress, while also staying put.

The researchers created two types of electrodes: one made of nickel deposited in a narrow, squiggly pattern, and the other cut from partially burnt paper that was coated with a waxy film. When the team affixed both electrodes to detached soybean leaves with clear adhesive tape, the nickel-based electrodes performed better, producing larger signals as the leaves dried out. The metal ones also adhered more strongly in the wind, which was likely because the thin squiggly design of the metallic film allowed more of the tape to connect with the leaf surface. Next, the researchers created a plant-wearable device with the metal electrodes and attached it to a living plant in a greenhouse. The device wirelessly shared data to a smartphone app and website, and a simple, fast machine learning technique successfully converted these data to the percent of water content lost. The researchers say that monitoring water content on leaves can indirectly provide information on exposure to pests and toxic agents. Because the plant-wearable device provides reliable data indoors, they now plan to test the devices in outdoor gardens and crops to determine when plants need to be watered, potentially saving resources and increasing yields.

The authors acknowledge support from the São Paulo Research Foundation and the Brazilian Synchrotron Light Laboratory. Two of the study’s authors are listed on a patent filing application for the technology.

Video: https://youtu.be/i864_c0fvVg

We would love to thank the author of this post for this awesome material

A new wearable technology — for plants

Travors